Lemma 8.8.4. Let $\mathcal{C}$ be a site. Let $f : \mathcal{X} \to \mathcal{Y}$ and $g : \mathcal{Z} \to \mathcal{Y}$ be morphisms of fibred categories over $\mathcal{C}$. In this case the stackification of the $2$-fibre product is the $2$-fibre product of the stackifications.

**Proof.**
Let us denote $\mathcal{X}', \mathcal{Y}', \mathcal{Z}'$ the stackifications and $\mathcal{W}$ the stackification of $\mathcal{X} \times _\mathcal {Y} \mathcal{Z}$. By construction of $2$-fibre products there is a canonical $1$-morphism $\mathcal{X} \times _\mathcal {Y} \mathcal{Z} \to \mathcal{X}' \times _{\mathcal{Y}'} \mathcal{Z}'$. As the second $2$-fibre product is a stack (see Lemma 8.4.6) this $1$-morphism induces a $1$-morphism $h : \mathcal{W} \to \mathcal{X}' \times _{\mathcal{Y}'} \mathcal{Z}'$ by the universal property of stackification, see Lemma 8.8.2. Now $h$ is a morphism of stacks, and we may check that it is an equivalence using Lemmas 8.4.7 and 8.4.8.

Thus we first prove that $h$ induces isomorphisms of $\mathit{Mor}$-sheaves. Let $\xi , \xi '$ be objects of $\mathcal{W}$ over $U \in \mathop{\mathrm{Ob}}\nolimits (\mathcal{C})$. We want to show that

is an isomorphism. To do this we may work locally on $U$ (see Sites, Section 7.26). Hence by construction of $\mathcal{W}$ (see Lemma 8.8.1) we may assume that $\xi , \xi '$ actually come from objects $(x, z, \alpha )$ and $(x', z', \alpha ')$ of $\mathcal{X} \times _\mathcal {Y} \mathcal{Z}$ over $U$. By the same lemma once more we see that in this case $\mathit{Mor}(\xi , \xi ')$ is the sheafification of

and that $\mathit{Mor}(h(\xi ), h(\xi '))$ is equal to the fibre product

where $i : \mathcal{X} \to \mathcal{X}'$, $j : \mathcal{Y} \to \mathcal{Y}'$, and $k : \mathcal{Z} \to \mathcal{Z}'$ are the canonical functors. Thus the first displayed map of this paragraph is an isomorphism as sheafification is exact (and hence the sheafification of a fibre product of presheaves is the fibre product of the sheafifications).

Finally, we have to check that any object of $\mathcal{X}' \times _{\mathcal{Y}'} \mathcal{Z}'$ over $U$ is locally on $U$ in the essential image of $h$. Write such an object as a triple $(x', z', \alpha )$. Then $x'$ locally comes from an object of $\mathcal{X}$, $z'$ locally comes from an object of $\mathcal{Z}$, and having made suitable replacements for $x'$, $z'$ the morphism $\alpha $ of $\mathcal{Y}'_ U$ locally comes from a morphism of $\mathcal{Y}$. In other words, we have shown that any object of $\mathcal{X}' \times _{\mathcal{Y}'} \mathcal{Z}'$ over $U$ is locally on $U$ in the essential image of $\mathcal{X} \times _\mathcal {Y} \mathcal{Z} \to \mathcal{X}' \times _{\mathcal{Y}'} \mathcal{Z}'$, hence a fortiori it is locally in the essential image of $h$. $\square$

## Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like `$\pi$`

). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.

## Comments (0)

There are also: